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Abstract

Ray tracing is a powerful technique to generate realistic images of 3D scenes. A drawback is its high
demand for processing power. Multiprocessing is one way to meet this demand. However, when the
models are very large, special attention must be paid to the way the algorithm is parallelised. Combining
demand driven and data parallel techniques provides good opportunities to arrive at an efficient scalable
algorithm. Which tasks to process demand driven and which data driven, is decided by the data intensity
of the task and the amount of data locality (coherence) that will be present in the task. Rays with the
same origin and similar directions, such as primary rays and light rays, exhibit much coherence. These
rays are therefore traced in demand driven fashion, a bundle at a time. Non-coherent rays are traced data
parallel. By combining demand driven and data driven tasks, a good load balance may be achieved, while
at the same time spreading the communication evenly across the network. This leads to a scalable and
efficient parallel implementation of the ray tracing algorithm.

1 Introduction

From many fields in science and industry, there is an increasing demand for realistic rendering. Architects
for example need to have a clear idea of how their designs are going to look in reality. In theatres the
lighting aspects of the interior are important too, so these should be modelled as accurately as possible. It
is evident that making such designs is an iterative and preferably interactive process. Therefore next to re-
alism, short rendering times are called for in these applications. Another characteristic of such applications
is that the models to be rendered are typically very large.

It is very difficult to develop algorithms which meet all these demands. Z-buffering algorithms are
known for their speed (they are even suitable for animation purposes), but lack sufficient realism for ar-
chitectural imagery. On the other hand, those algorithms that do offer an acceptable level of realism, ray
tracing and radiosity, are computationally too expensive. Past attempts to overcome these problems gener-
ally follow two different approaches. One is to increase the quality of z-buffer algorithms, while retaining
their speed. The other method is to speed up radiosity and ray tracing algorithms by using parallel or
distributed systems. By having multiple processors to compute parts of the same problem, considerable
speed-ups are to be expected.

The most common way to parallelise ray tracing is the demand driven approach where each proces-
sor is assigned a part of the image (Plunkett and Bailey 1985) (Crow, Demos, Hardy, McLaugglin and
Sims 1988) (Lin and Slater 1991). Alternatively, coherent subtasks may be assigned to processors with
a low load. This has the advantage of spreading the load evenly over the processors (Green and Paddon
1989) (Shen 1993), but it requires either the data to be duplicated with each processor, thereby limiting
the model size, or an efficient caching mechanism to be implemented. Caching may reduce the amount of
communication, but its efficiency is highly dependent on the amount of data coherence. Therefore caching
can never completely eliminate inter processor communication.
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Alternatively, scheduling could be preformed by distributing the data over the processors according to
a spatial subdivision consisting of voxels. Rays are then traced through a voxel and when a ray enters the
next voxel, it is transferred as a task to the processor holding that voxel’s objects (Dipp´e and Swensen 1984)
(Cleary, Wyvill, Birtwistle and Vatti 1986) (Kobayashi, Nishimura, Kubota, Nakamura and Shigei 1988).
This is called the data parallel or data driven approach and it is the basis of our parallel implementation.
The advantage of such an approach is that there is virtually no restriction on the size of the model to
be rendered. However, there are also some rather severe disadvantages, which include a load balancing
problem and a large overhead on communication when there are a large number of processors.

The problems with either pure demand driven or data driven implementations may be overcome by
combining the two, yielding a hybrid algorithm (Scherson and Caspary 1988) (Jansen and Chalmers 1993).
Scherson and Caspary (1988) propose to take the ray traversal task, i.e. the intersection of rays with the
spatial subdivision structure, such as an octree, to be the demand driven component. As an octree does
not occupy much space, it may be replicated with each processor. Permitting the load on a processor is
sufficiently low, a processor can then perform demand driven ray traversal tasks, in addition to ray tracing
through its own voxel in a data driven manner. The demand driven task then compensates for the load
balancing problem induced by the data parallel component, while at the same time the amount of data
communication is kept low.

Computationally intense tasks that require little data are thus preferably handled in a demand driven
manner, while data intensive tasks are better suited to the data parallel approach. A problem with the hy-
brid algorithm by Scherson and Caspary (1988) is that the demand driven component and the data driven
component are not well matched, i.e. the ray traversal tasks are computationally not expensive enough to
optimally compensate for the load balancing problem of the data parallel part. Therefore, our data parallel
algorithm (presented in sections 3 and 4) will be modified to incorporate some extra demand driven com-
ponents differently from Scherson and Caspary (1988).

A key notion for our implementation is coherence, which means that rays that have the same origin
and almost the same direction, are likely to hit the same objects. Both primary rays and shadow rays
directed to area light sources (see section 2) exhibit this coherence. To benefit from coherence, primary
rays can be traced in bundles, which are called pyramids in this paper. A pyramid of primary rays has the
viewpoint as top of the pyramid and its cross section will be square. First the pyramids are intersected with
a spatial subdivision structure, which yields a list of cells containing objects that possibly intersect with the
pyramids. Then the individual rays making up the pyramid are intersected with the objects in the cells. By
localising the data necessary, these tasks can very well be executed in demand driven mode.

Shadow tracing for area light sources provides another opportunity to exploit coherence, as per inter-
section, a bundle of rays would be sent towards them. These rays originate from the intersection point and
all travel towards the area light. The coherence between these rays is considerable, and they can also be
traced in a pyramid, much in the same way primary rays are handled. Further, instead of communicating
the shadow ray tasks to neighbouring voxels, shadow tracing can also be performed as a demand driven
task at the local processor that found the intersection. This may necessitate fetching object data from other
processes, so that caching becomes a relevant technique. However, because the same objects may prove
to block a light sources for many possible intersections within a voxel, caching is expected to be highly
efficient.

For each intersection found, shading is subsequently performed by separate shading processes. These
shading processes may be scheduled as a demand driven task by assigning them to processors which have a
low load. As these tasks also involve communication, they may also be scheduled on processors that have
a low communication load.

Adding these three demand driven tasks (processing of primary and shadow rays and shading) to the
basic data driven algorithm, will improve the load balance and increase the scalability of the architecture.

In this paper, first some general properties of ray tracing are discussed, followed in section 3 by a de-
scription of the data parallel component of our parallel implementation. Next, the demand driven compo-
nent and the handling of light rays are introduced in sections 4 and 5 respectively. The complete algorithm
is described in terms of processes in these sections. A suitable mapping to a processor topology is described
in section 6. Finally, conclusions are drawn in section 7.



2 Ray tracing

Ray tracing is a technique for creating a two-dimensional image of a three-dimensional virtual environment
(Whitted 1980). This environment, or model, typically consists of surfaces and light sources. The view-
point determines which part of the model is displayed on the screen. In front of the viewpoint an image
plane is selected. The part of the model which is visible from the viewpoint through the image plane, will
form the image.

The light sources can be thought of as emitting rays of light. These rays can be emitted in all directions.
A number of these rays will hit a surface where they are partially absorbed, reflected and refracted. Some
light rays will continue along the reflected and refracted directions and may or may not hit the viewpoint.

To calculate an image, we can capture this incoming light by reversing this process, i.e. rays are traced
from the eye point back into the environment. These rays are called primary rays. When such a ray inter-
sects a surface, the shading of the surface is determined, given the direction of the incoming light, and it is
assigned to the pixel in the image plane through which the ray was shot. This is the most basic form of ray
tracing. A number of extensions are possible to account for more lighting effects, to improve the quality of
the image or to reduce the number of computations involved.

To account for effects such as shadows and transmission of light through objects, secondary rays start-
ing at the intersection point can be cast, see figure 1. Three classes are summed up here (Glassner 1989):

� Shadow rays or illumination rays. These rays carry light from a light source directly to a surface.

� Reflection rays. These rays are used to compute the contribution of light coming from the re-
flected direction. Additionally, secondary rays can be used to account for indirect reflection (ra-
diosity) (Ward, Rubinstein and Clear 1988).

� Transparency rays. These rays carry light through an object.
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Figure 1: Overview of ray tracing

Reflection and transparency rays introduce recursion into the algorithm, because they are treated in
exactly the same way primary rays are treated. As a stopping criterion, usually a threshold is set to specify
the maximum level of recursion.

An easy way to add a lot of detail to the model is by using texture mapping. Instead of assigning a single
colour to each surface, a pattern (the texture) may be projected onto the surfaces of objects. Textures are
usually defined as bitmaps. Whenever an intersection is found with an object that has a texture assigned to
it, in addition to shooting secondary rays, this texture must be sampled as well. This is normally considered
part of the shading of a surface.



3 Data parallel ray tracing

To derive a data parallel ray tracer, the algorithm itself must be split up into a number of processes and the
object data must be distributed over these processes. Both issues are addressed in this section, beginning
with the data distribution.

Objects in a model generally exhibit coherence, which means that objects consist of separate connected
pieces bounded in space, and distinct objects are disjoint in this space (Green and Paddon 1989). Other
forms of coherence, such as coherence between rays, where rays with similar origins and directions are
likely to intersect the same objects, are derived from this definition. To exploit object coherence in a
data parallel algorithm, it is best to store objects that are close together, with the same processor. Such
a distribution may be achieved by splitting the object space into (equal sized) voxels and assigning each
voxel with its objects to a process.

Ray tracing is now performed in a master-slave setup. A host process initialises a number of slave
processes, and then determines which slave gets which data. After initialisation, for each primary ray the
host determines which voxel it originates in and sends this ray as a task to the associated trace process.
When all primary rays are dispatched, the host will wait for incoming pixel values, which it will write to
an image file. The host process and its incoming and outgoing messages is depicted in figure 2.
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Figure 2: Host process

There are two different types of slave processes, one which traces rays through the voxel it is assigned,
and one which performs shading for each intersection detected by the tracing processes. Each tracing
process has the objects pertaining to its voxel. This process reads a ray task from its buffer and traces
the ray. Two situations may occur. First, the ray may leave the voxel without intersecting any object. If
this happens, the ray is transferred to a neighbouring voxel. Else, an intersection with some locally stored
object is found and secondary rays are spawned. These are subsequently traced until one of these two
criteria is met. Also, when an intersection is found, one of the shading processes is informed, so that it
reserves storage space to hold the results returned by tracing and shading secondary rays.

The shading process performs two main functions, the actual shading and the book keeping necessary
as the order in which secondary rays are completed is indeterminate. It may receive intersection infor-
mation from tracing processes, which tells the shading process that an intersection is found that caused
secondary rays to be spawned. Somewhere in the future this shading process will receive colour values
upon completion of these secondary rays.

A shading process may receive colour values from both tracing processes and (other) shading processes.
For a particular intersection these will arrive later in time than the intersection information itself. Therefore,
these colour values may be stored with the data concerning the intersection that generated the secondary
rays. When a colour value is received, it is also determined if this colour value is the last one belonging to
that particular intersection. If this is the case, all necessary information to shade a ray has been received,
and the shading is performed. After that, the resulting colour value is sent to the process that spawned the
ray, which completes this shading task. The shading and tracing processes with their communication are
depicted in figure 3.

The advantages of this way of parallel ray tracing are that very large models may be rendered as the
object database does not need to be duplicated with each processor, but can be divided over the processor’s
memories instead. Ray tasks will have to be transferred to other processors, but as each voxel borders on at
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Figure 3: Trace and shade processes

most a few other voxels, communication for ray tasks is only local. This means that data parallel algorithms
are scalable without too much loss of efficiency.

Disadvantages are that load imbalances may occur. These may be solved by either static load balancing,
which most probably yields a suboptimal load balance, or dynamic load balancing, which may induce too
much overhead in the form of data communication.

Some flexibility may be obtained by performing the shading primarily by those processors that are less
occupied. For this, shading must be independent of tracing, and hence be independent of object data. To
achieve this, texture mapping is assumed to be part of the tracing task. Because shading is computationally
rather cheap, this may not solve the load balancing problem completely, although it is expected to balance
communication requirements across the network, see section 6.

In order to have more control over the average load of each process, and thereby overcome most of the
problems associated with data parallel computing, some demand driven components may be added to this
algorithm, which is the topic of the folowing sections.

4 Demand driven pyramid tracing

As tracing rays is by far the most expensive operation in ray tracing, this should be performed as efficiently
as possible, i.e. ray coherence should be exploited where present. In ray tracing, different types of rays
are generated and each of them has unique properties which call for different handling. We classify rays
according to the amount of coherence between them. For example, primary rays all originate from the eye
point and travel in similar directions. These rays exhibit much coherence, as they are likely to intersect the
same objects. This is also true for shadow rays that are sent towards area light sources.

Restricting ourselves for the moment to primary rays, a common technique to trace a number of rays to-
gether, is by replacing them by a generalised ray (Glassner 1989). Examples are cone tracing (Amanatides
1984), beam tracing (Heckbert and Hanrahan 1984) (Greene 1994) and pencil tracing (Shinya, Takahashi
and Naito 1987). A slightly different method is presented here, consisting of two steps. First, the primary
rays are bundled together to form pyramids. These are then intersected with a spatial subdivision. The
result of this pyramid traversal is a clip-list, which is an ordered list of cells that intersect (partially) with
a pyramid. No object data is necessary to perform this step; only the spatial subdivision structure and the
pyramids. Assuming the subdivision structure is a bin-tree, the process of pyramid traversal is depicted in
figure 4.

The second step consists of tracing the individual rays within each pyramid, using the information
obtained from the pyramid traversal. Tracing the rays within a pyramid will therefore require a relatively
small number of objects, namely the objects that lie within the cells traversed. For this reason, pyramid
tracing may be executed in a demand driven manner, as the data communication involved is restricted.

As the pyramids diverge the further they are away from the origin, coherence decreases. It may there-
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Figure 4: Pyramid traversal generates clip list (cells 1-6).

fore be necessary after a certain distance is travelled, to switch from demand driven execution to data driven
execution, as described in the preceding section.

5 Shadow rays

In ray tracing, for each intersection, rays are shot towards each light source. This means that in data parallel
ray tracing the voxels that contain light sources, may become bottlenecks. Especially area light sources,
which generate a bundle of rays per intersection, are problematic. It is therefore advantageous to apply
some form of pyramid tracing to these rays as well. To avoid contention at the processes containing light
sources, light pyramids may be processed locally by the processes that initiated them. If we choose to trace
shadow pyramids with the process that spawned then, it may be necessary to fetch objects from remote
processes, as figure 5 illustrates. In this figure, the object in the right voxel, which is in front of the area
light source, is needed by all light pyramids depicted.

pyramid

area light

object

pyramid

pyramid

Figure 5: The object in the right voxel is needed for light pyramid tracing by the process managing the left
voxel.

Each process that may spawn light pyramids should be equipped with a cache, which reduces data com-
munication. The effectiveness of such a cache is estimated to be high, because many pyramids generated
from within a voxel, will intersect with the same objects.

6 Architecture and implementation

Up until this point, the algorithm is described in terms of processes, which is architecture independent.
If this algorithm is to be implemented, these processes must be mapped onto a certain network topology.
Often used network topologies are hypercubes and meshing architectures. The data parallel part of the
algorithm has its object data subdivided according to a voxel structure. Because voxels map very conve-
niently to a meshing architecture, hypercubes are not considered any further.



The algorithm distinguishes a number of different processes. First of all, there is a host process, which
initiates pyramid traversal tasks and receives pixel values. Second, there are pyramid tracing processes
which operate in demand driven mode. Ray tracing processes for tracing individual secondary rays form
a third category. These processes also perform light pyramid tracing, using a cache for objects. Tracing is
performed in data driven manner. Shading processes, finally, perform shading excluding texture mapping.

One possible mapping of processes onto processors is depicted in figure 6. There is one host processor
and a cluster of slave processors. Each of these slave processors runs data parallel tracing processes. Some
of them, typically the ones with a low load, may also run a pyramid tracing or a shading process

Pyramid tracing

Additional :

Cluster of ray tracing processors

Shading

Host

Figure 6: Mapping of processes onto processors

The pyramid tracing processes should be located on processors that are preferably close to each other,
because objects may be transferred between these processes (caching). Pyramid tracing tasks should also
be scheduled to processors that are located close to the host processor, in order to minimise long distance
communication.

As shading is not computationally expensive, a small number of shading processes may suffice. These
may be located on those processors where due to the tracing processes, the load is expected to be low. This
may be achieved through either static or dynamic load balancing.

In a data parallel tracing cluster, the optimal number of processors will be bounded by the amount of
task communication which increases when new processors are added. If this optimal number of processors
is lower than the number of processors available for data parallel tracing, it may be possible to add other
identical data parallel clusters. In that case the object database is distributed within a cluster, but duplicated
over the clusters. Ray tasks may then be executed in any of the available clusters, without ever having to
be transferred between clusters. This scheme of cluster replication works because the objects in the scene
do not change during the computation, therefore making it applicable to ray tracing, but not to radiosity or
other algorithms which update the object database in the course of execution (e.g. Radiance (Ward 1994)).

An alternative strategy would be to add more processors that work only in demand driven mode, shifting
the point where demand driven tasks are converted to data driven tasks. This may lead to a more pipelined
architecture (figure 7).

Ray tracing processors

Demand driven cone tracing

Demand driven shading

Frame bufferHost

Figure 7: “Pipelined” architecture

For the current implementation we have used an adapted version of Rayshade (Kolb 1992), which is a



sequential public domain ray tracer. The language used is C, extended with the PVM parallel library (Geist,
Beguelin, Dongarra, Jiang, Manchek and Sunderam 1993). Although using standard libraries may be less
efficient than hard coding for a specific architecture, it has great advantages in terms of portability. In
addition to that, parallel ray tracing provides an almost ideal test case for such parallel tools.

7 Conclusions

The two basic approaches to parallel rendering, demand driven and data parallel, both have their shortcom-
ings. Data driven allows the algorithm to be scaled, but almost invariably leads to load imbalances. Demand
driven approaches achieve better load balancing, but may suffer from a communication bottleneck, which
makes them less scalable.

In order to arrive at an efficient scalable algorithm for ray tracing, the algorithm is best split into a
demand driven and a data parallel component. Rays that show much coherence are then most efficiently
traced by a demand driven algorithm which exploits ray coherence as much as possible. The pyramid
tracing algorithm described in this paper does precisely that.

For rays that are less coherent, such as reflection rays and transparency rays, the data parallel approach
pays off, as fetching object data, which is associated with demand driven solutions, is too expensive for
single rays.

The current status of the project is that the data driven cluster is finished. All the extra demand driven
processes still have to be implemented. For this reason, no speed-up of scalability measures have been
taken yet.
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