
Pyramid Clipping for Efficient Ray Traversal

Maurice van der Zwaan, Erik Reinhard, Frederik W. Jansen

Faculty of Technical Mathematics and Informatics,
Delft University of Technology, Julianalaan 132,

2628BL Delft, The Netherlands

Abstract: Rays having the same origin and similar directions frequently appear
in the form of viewing rays and shadow rays to area light sources in ray tracing,
and in hemisphere shooting or gathering in radiosity algorithms. The coherence
between these rays can be exploited by enclosing a bundle of these rays with a
pyramid and by classifying objects with respect to this pyramid prior to tracing
the rays. We present an implementation of this algorithm for a bintree spatial sub-
division structure and compare the performance with a recursive bintree traversal
and the standard grid traversal algorithm. In parallel implementations the tech-
nique can be used to create coherent intersection tasks, allowing demand-driven
scheduling with low communication overheads.

1 Introduction

With high quality rendering becoming more and more widespread, the demand for
shorter rendering times increases. Both ray tracing and ray tracing-based radiosity al-
gorithms may satisfy the needs of users in terms of quality, but still lack behind when
it comes to speed of execution. Spatial subdivision techniques have greatly improved
the efficiency of ray tracing but further optimizations in that direction will be difficult
to achieve.

Parallel processing offers an interesting alternative to further speed up the ray trac-
ing process. A problem, however, occurs with object models that are too large to be
replicated at each processor memory. Then object data will have to be communicated
to the intersection tasks or the tasks will have to be brought to the data. In both cases
severe communication overheads and/or load unbalances may be introduced. Efficient
parallel rendering can only be achieved when enough data coherence is present in the
handling of subsequent ray intersection tasks [1].

A way to create coherent ray intersection tasks is to bundle neighboring rays and
to pre-select those objects that are likely to be intersected by this bundle of rays (see
figure 1). In Shen et al. [2] such a technique is used to schedule ray tasks on a number of
demand-driven intersection processors. Shooting a coherent bundle of rays is a powerful
computing primitive that can be applied to tracing primary rays, tracing shadow rays for
area light sources and in ray tracing based radiosity algorithms for shooting or gathering
energy from one patch to another. Also with brdf-reflection models, incoming rays will
spawn a large number of coherent reflection rays.

Earlier ray coherence methods exploiting the notion that rays with similar directions
and origins, are likely to intersect the same objects, can be found in [3, 4, 5]. Also shaft
culling [6] is a method that classifies objects as in or outside of a shaft constructed,



Fig. 1.Coherence between rays.

for instance, between a surface and a light source, or between a shooting patch and a
receiving patch.

Recently, Greene published an algorithm for intersecting arbitrary convex polyhe-
drons with rectangular solids that can be used to efficiently cull polygons that are inside
a viewing pyramid from an octree spatial subdivision structure [7]. The viewing pyra-
mid is intersected with the octree and each (axis-aligned) cell of the octree is recursively
tested for overlap with the pyramid. A maximum of three tests may be needed to con-
clude if the pyramid intersects with a cell. In the first test, the bounding box of the
pyramid is tested against the cell. If some overlap is found, the second test is invoked,
which tests on which side of each of the planes making up the pyramid the cell lies.
If the cell is inside any of these planes, the third test is necessary. In this test, the cell
and the pyramid are projected onto the three orthographic planes. If in all three views
the projection of the cell is outside the projection of the pyramid, then the two do not
intersect.

We have been experimenting with a similar algorithm that we originally gave the
name of cone clipping [8] and recently renamed in pyra-clip, an abbreviation of pyra-
mid clipping. Our method only differs from Greene’s method in that a bintree is used
instead of an octree, and for the second and third test a Cohen-Sutherland clipping test
is used to determine whether the cell intersects the pyramid. Our version is explained
in more detail in sections 2 and 3. In section 4 we compare the method with two reg-
ular single-ray traversal methods, one for a bintree and one for a grid. The results are
discussed in the final section.

2 Pyramid - bintree intersection

The pyra-clip algorithm assumes the presence of a bintree structure. This structure is
created in a preprocessing step. The pyra-clip algorithm itself consists of two parts.
In the first part, a pyramid is created (this can, for instance, be the viewing pyramid
or a subpart of it) that encloses a number of rays having the same origin and similar
directions. This pyramid is intersected with the bintree structure. This results in an
ordered list of bintree cells that are (partly) inside the pyramid. Then, in the second step,
the individual rays that formed the pyramid are traced through the cells. The algorithm
is done when for each ray an intersection is found. The first step is discussed in this
section, while the ray traversal is discussed in section 3.

Central to the first step is the classification of each bintree cell to the pyramid. This
classification uses a variant of the Cohen-Sutherland line clip algorithm. To this extent,
the bintree is recursively tested for intersection with the pyramid. Each level requires



at most two tests to determine whether an intersection occurs between a cell and the
pyramid.

Origin

F

D

A
B

P

G

H

E

C

Fig. 2. The planes defining the pyramid generate nine subspaces.

The first test examines the position of the vertices of a cell with respect to the planes
of the pyramid. The four planes of the pyramid define nine subspaces which may con-
tain one or more of the vertices of the cell, see figure 2. The position of the vertices is
derived from the distances of the vertices to the planes of the pyramid. The following
cases now may occur:

– All distances are positive indicating that the vertices are inside sector P (see fig-
ure 2). This means that the cell is completely contained within the pyramid.

– Not all vertices are inside sector P. The cell will be partially inside the pyramid.
– The vertices are in three consecutive subspaces, excluding P (for example A-B-C

or C-E-H). Now the cell will be completely outside the pyramid.
– The vertices are in both subspace B and G or in both D and E. Because of the

convexity of the pyramid, the cell is partially inside the pyramid.
– The vertices are located in the subspace A, C, F and H. This means that the pyramid

is contained within the cell.

These tests can be efficiently implemented with bitwise operations. For each vertex of
the cell, a bitmask is set, indicating which of the subspaces it is in. The bitmasks for
each vertex are OR-ed together, resulting in a bitmask indicating the position of the
entire cell with respect to the pyramid.

All these tests are relatively simple and therefore fast. For bintree cells that are
completely inside or completely outside, no further testing is needed. The cells that are
partially inside require their descendants to be recursively tested. This test is expected
to be conclusive for most situations, but there are exceptions. An example is if vertices
are both in partly opposite subspaces (e.g. D and C). For these situations, a more con-
clusive second edge test is needed.

The second test explicitly classifies the edges of the bintree cell with respect to the
pyramid. Because it is not necessary to know what exactly the shape of the intersecting
volume is, no clipping in the true sense of the word is performed. The following test
is performed for each pair of vertices defining an edge. For each vertex of a bintree
cell, the distance to each of the pyramid planes is known. Using these distances, we
can easily compute whether an edge intersects the pyramid or not, see figure 3. In this
example, the distances between the vertices and the pyramid planes are given bya1, b1



Angle� < deg 180) outside

�
�

pyramid planes

edge

edge

pyramid planes

b1

b2

a2

a1

b1

a2

a1

b2

Angle� � deg 180) inside

Fig. 3. Simplified clipping test.

anda2 andb2 respectively. An edge intersects the plane if and only if

a1

b1
� a2

b2
(1)

A special situation occurs if the vertices of an edge are in diagonally opposite sec-
tors, as is depicted in figure 4 (left). In this case, two evaluations of equation 1 are
necessary. If the first of these tests indicates that the edge does not intersect the pyra-
mid, the second test can be omitted, otherwise the second one is conclusive.

vertex

require at most two tests
Edge vertices in opposite sectors Side view of clipping test

pyramid

edge

top

vertex

pyramid planes

edge

Fig. 4. Left: opposite sectors. Right: side view.

All edges are tested this way until an edge is found to intersect with the pyramid or
until all twelve edges are tested. Then we can still have the case that no edge intersects
the pyramid, but the cell completely surrounds the pyramid. In order to handle this
case, for each edge a mask similar to the one in the first test, is updated. After each
edge is tested, the orientation of the pyramid with respect to the cell is known and the
intersection routine returns with the result.



In 3D, the distances that are used to classify an edge as inside or outside, are all
with respect to the planes of the pyramid. Because for both vertices defining an edge,
the distances to the same planes are used, the method is valid in 3D. Looking along the
line indicated by the arrow in figure 4 (right), the image of figure 4 (left) would be seen.

Old distance (reused)

Pyramid plane

Subdivided bintree cell

Old distance (reused)
New distance is average of two old distances

Fig. 5. Distances can be computed incrementally.

The distances are not computed for each vertex of each cell anew. Instead the regular
structure of the bintree is used to efficiently calculate at each level of recursion the
distances of the children nodes out of the distances of their parent node, see figure 5.
Per subdivision only four new distances have to be computed, each by averaging two
old distances. Eight old distances can be retained. Then, the pyramid - cell intersection
routine can be called for the two new bintree cells.

The cell farthest from the view point is put on a stack and the cell nearest the view
point is processed first. In this way, the first leaf cell reached is the one closed to the
view point. All following leaf cells are automatically derived in the correct order.

The ordered cells are stored in a list, which is called the cliplist. Each pyramid thus
generates its own cliplist during the traversal of the bintree that effectively contains all
the cells that are traversed by at least one ray of the bundle and most likely by a majority
of these rays (see figure 6). The six planes of each cell (xmin, xmax, ymin, ymax, zmin,
zmax) are also copied to the cliplist. These are needed for the final ray traversal.

In addition, the objects in the cells may also be tested with respect to the pyramid
planes and marked as in or out (excluding objects that will never be intersected by any
of the rays).

Pyramid

6

5

4
1

3
2

Eye point

Fig. 6. Ray traversal generates cliplist (cells 1-6).



3 Ray traversal

After the cliplist has been generated, the first step of the pyraclip algorithm is finished.
The next step is to determine which objects intersect with the rays within the pyramid.
The ray traversal traverses the cells in list order until an intersection is found. While
examining a new cell from the cliplist, the ray parameter value of the exit point for
that cell is calculated. The ray exit point is the closest intersection with one of the
(three) backfacing cell planes. Which of the six planes are the backfacing planes can be
determined from the ray direction. The ray parameter of the exit point is then calculated
with three multiplications, three adds and two compare. With an additional compare,
it is determined whether the ray actually intersects the cell. If the new ray parameter
is smaller than the parameter of the previous exit point, then the cell is not intersected
by the ray and can be skipped. For instance in figure 7, the exit point for cell1 is p1
(minimum ofp1 andp2). The exit point for cell2 is p2 (minimum ofp2 andp4). For
cell 3 exit pointp1 would be selected again, which is closer to the origin of the ray than
the exit point of the previous cell. Therefore, it is concluded that cell3 can be skipped,
after whichp3 is found to be the exit point of cell4.

What we have obtained with this algorithm, is a traversal for an adaptive spatial
subdivision but with a ray traversal cost comparable with the standard grid method.

1 3

4

2 p4

p1

p2

p3

Fig. 7. Ray traversal.

4 Implementation and Evaluation

In order to have an idea how efficient the algorithm is, we have implemented it in
Rayshade [9], a widely used public domain ray tracer. Earlier tests have shown that the
grid traversal method in Rayshade is one of the fastest ray traversal methods [10, 11].
The grid traverseral in Rayshade is fast, because the standard DDA algorithm is en-
hanced with raybox testing [12] and ray hit caching. In our tests we have also included
a comparison with the recursive bintree traversal algorithm [13, 14], implemented in
Rayshade by de Leeuw [15].

For the test we have only traced primary rays (no shadow and reflection rays). The
screen is subdivided into a number of non-overlapping rectangular regions and for each
region a pyramid is constructed with its top at the view point. The size (width) of the
pyramids (number of rays) is an important parameter that will directly affect the perfor-
mance. If there are too few rays in a pyramid, then the overhead induced by the clipping
algorithm will be more than the gain in the reduction of ray object intersections. On the
other hand, if the pyramids are too large, the number of cells tested as outside will re-
duce, resulting in more ray - object intersection tests per ray. Other parameters that will



affect performance are the number of objects (polygons/balls), the maximum number
of objects allowed in a cell and the maximum depth of the bintree

For the test we have used two models, balls and teapot, from the standard procedural
database [16]. The models are depicted in figure 8. We chose these models because
they do not distribute all objects uniformily over object space, which would give an
unrealistic test result compared to models normally used in ray tracing and radiosity
algorithms. We used the models in different resolutions.

Fig. 8.Standard Procedural Models (balls and teapot)

First we verified the optimum setting of the subdivision parameters. For the grid
method (uniform spatial subdivision) the rule of thumb given by de Leeuw [15] was
confirmed. The number of voxels should equal the number of objects, or stated oth-
erwise the number of voxels in each direction should be approximately equal to3

p
N ,

whereN is the number of objects in the model. In fact, we found2 +
3
p
N to be the

optimal setting for the two models.
The bintree algorithms were less sensitive to different parameter settings. For both

model ranges, a maximum of12 (or16) objects per cell proved to be optimal. The max-
imum number of subdivisions varied from18 for the small models to24 for the large
models (a maximum subdivision level of24 corresponds with a maximum resolution of
28 = 256 in both x, y and z directions). For other parameter settings, the times are only
a few seconds off.

Then the optimal size for the pyramids was tested. The image size is512 by 512
pixels. For each of the models, images were computed with22; 42; 82; : : : ; 1282 pyra-
mids per image. The optimum size lies around32x32 pyramids (162 rays per pyramid;
see figure 9 (right)). The pyra-clip time to generate the cell list is about1 second for
32x32 pyramids and2 seconds for64x64 pyramids (see figure 9 (left)). The prepro-
cessing time is linear in the number of objects, see figure 10. We choose therefore the
32x32 pyramid subdivision.

Rendering times for the162 rays per pyramid pyraclipping, the bintree recursive
and the uniform grid algorithm, are shown in figure 11. The tests were done on a SGI
Power Onyx with 256 Mb internal memory. The memory available prohibited testing
larger models. The pyraclip numbers give the pure traversal time, without the overhead
of the clipping and without tracing secondary rays.

The figures show that the grid performs linear with respect to the number of objects,
while the recursive bintree is logarithmic and wins for largerN . A multi grid method
would probably have shown a similar performance. In fact this is the first time that we



0.0625

0.125

0.25

0.5

1

2

4

8

16

4 8 16 32 64 128
Number of pyramids in x and y directions

Screen size = 512 x 512

balls
teapot

16

32

64

4 8 16 32 64 128
Number of pyramids in x and y directions

Screen size = 512 x 512

balls
teapot

Fig. 9.Preprocessing time (left) and rendering time (right) as function of pyramid size (timing in
seconds).

0.01

0.1

1

10

10 100 1000 10000 100000 1e+06
Primitives

balls
teapot

Fig. 10.Preprocessing time (in seconds) as function of the number of primitives.

are able to show that the performance of the recursive bintree traversal islogN for such
large models. Unfortunately, the pyraclip traversal adheres more to the grid method than
to the recursive bintree traversal and thus looses in the end compared to the recursive
ray traversal. The figures show that there is no use for the pyraclip method for efficiency
reasons only. All methods perform equally well (within the tested range). We found this
also to be true for the other SPD models.

5 Conclusions and future work

The pyra-clip algorithm intersects a bundle of rays with a hierarchical spatial subdi-
vision structure. First an ordered list of bintree cells is generated using an efficient
pyramid - cell intersection method. Then the separate rays are traced through the list of
cells.

The tests showed that the pyraclip method is not faster than the standard single ray
traversal methods and thus for speed purposes only, the method as such does not give
any additional benefit. However, the method is ideal in that it can generate with minor
overhead coherent ray intersection tasks (a bundle of rays and matching objects) that
can be executed as fast as the fastest ray traversal methods. We will therefore use this
method to generate demand-driven tasks in a parallel ray tracing and radiosity algo-
rithm [17].



20

30

40

50

10 100 1000 10000 100000 1e+06
Number of spheres

Bintree
Pyraclipping
Uniform grid

20

30

40

50

10000 100000 1e+06
Number of polygons

Bintree
Pyraclipping
Uniform grid

Fig. 11.Pyraclipping compared with uniform grid and bintree methods. Models used: balls (left)
and teapot (right); timing in seconds.

Each processor in such a parallel ray tracer would be capable of both performing
data parallel tasks and demand driven tasks. The data parallel tasks would provide a ba-
sic, though uneven load by tracing non-coherent secondary rays, such as reflection and
refraction rays. Primary rays are then handled in demand driven manner and scheduled
to processors with a low basic load. A processor receiving a bundle of rays and a cli-
plist will do the intersection calculations using this data. Shadow rays that sample area
light sources are handled in a similar way. Such hybrid scheduling should both min-
imise data communication and balance the workload, yielding an efficient and scalable
algorithm [18].

References

1. Green, S. A., Paddon, D. J.: ‘Exploiting coherence for multiprocessor ray tracing’,IEEE
Computer Graphics and Applicationspp. 12–27. (1989)

2. Shen, L. S., Deprettere, E., Dewilde, P.: A new space partition technique to support a highly
pipelined parallel architecture for the radiosity method,in Advances in Graphics Hardware
V, proceedings Fifth Eurographics Workshop on Hardware, Springer-Verlag. (1990)

3. Speer, L. R., DeRose, T. D., Barsky, B. A.: A theoretical and empirical analysis of coherent
ray-tracing,in Computer-Generated Images, Springer-Verlag, Tokyo, pp. 11–25. Proceed-
ings Graphics Interface ’85. (1985)

4. Hanrahan, P.: Using caching and breadth first search to speed up ray tracing,in Proceed-
ings Graphics Interface ’86, Canadian Information Processing Society, Toronto, pp. 55–61.
(1986)

5. Glassner, A. S., ed.:An Introduction to Ray Tracing, Academic Press, San Diego. (1989)
6. Haines, E. A., Wallace, J. R.: Shaft culling for efficient ray-traced radiosity,in Photorealistic

Rendering in Computer Graphics, proceedings Second Eurographics Workshop on Render-
ing, Springer-Verlag 1994, pp. 122–138. (1991)

7. Greene, N.: Detecting intersection of a rectangular solid and a convex polyhedron,in
P. Heckbert, ed., Graphics Gems IV, Academic Press, Boston, pp. 74–82. (1994)

8. van der Wal, P. O.: De coneclip versnellingsmethode voor raytracing, Master’s thesis, Delft
University of Technology. (1994)

9. Kolb, C. E.: Rayshade User’s Guide and Reference Manual, included in the Rayshade distri-
bution, which is available by ftp from princeton.edu:pub/Graphics/rayshade.4.0. (1992)



10. Jansen, F. W., de Leeuw, W. C.: Recursive ray traversal. In Ray Tracing News, vol 5, no 1.
(1992)

11. Jansen, F. W.: Comparison of ray traversal methods. In Ray Tracing News, vol 7, no 2.
(1994)

12. Snyder, J., Barr, A.: Ray tracing complex models containing surface tessellations,Computer
Graphics21(4), 119–128. (1987)

13. Jansen, F. W.: Data structures for ray tracing,in L. R. A. Kessener, F. J. Peters, M. L. P.
Lierop, eds, Data Structures for Raster Graphics, Springer-Verlag, Berlin, pp. 57–73. (1985)

14. Sung, K., Shirley, P.:Ray tracing with the BSP Tree, Graphics Gems III, Academic Press,
Boston, chapter 6, pp. 271–274. (1992)

15. de Leeuw, W. C.: Recursieve ray traversal, Master’s thesis, Delft University of Technology.
(1992)

16. Haines, E. A.: Standard procedural database, v3.1, 3D/Eye. (1992)
17. Jansen, F. W., Chalmers, A.: Realism in real time?,in 4th EG Workshop on Rendering,

pp. 1–20. (1993)
18. Reinhard, E., Jansen, F. W.: Hybrid scheduling for efficient ray tracing of complex images.

(1995) Accepted for the International Workshop on High Performance Computing for Com-
puter Graphics and Visualisation, Swansea, United Kingdom, july 3-4, 1995.


