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Abstract. One of the main challenges in global illumination is rendering scenes
with millions of polygons and megabytes of textures. Combining the processing
power and the memory of multiple processors or workstations to render these
complex scenes is an attractive proposition but the complex interactions between
data and processing introduces a significant amount of data communication. Data
locality methods may improve cache coherence and cache access coherence by
finding an optimal data partitioning, by re-ordering computations, and by replac-
ing complex geometry with simplified image-based representations. We review
the different data locality methods and focus on local caching of global radiance
values. We present the results of an implementation in the ray tracing program
Radiance.

1 Introduction

Parallel rendering has long been considered an answer to the high computational de-
mands of global illumination algorithms such as ray tracing and radiosity, and the ever
increasing size of models has recently spurred a renewed interest in this subject. The
complexity of computer models has increased tremendously over the years due to im-
proved data sampling and more powerful modelling techniques. Scenes with several
millions of polygons and many megabytes of texture images are no exception anymore.
Besides model data, most algorithms also employ additional data structures such as ra-
diosity meshes, spatial subdivision structures, mipmaps, and other methods to increase
the efficiency and quality of the sampling. These temporary data structures may also
take many megabytes. Given the total memory requirements of several gigabytes, dis-
tributing data in addition to distributing processing, may well prove to be a necessity in
such demanding applications.

Distributing the processing and the data over multiple processors, however, cre-
ates an overhead in the form of communication needed to match processing and data.
Either tasks are migrated to processors that store the necessary data (data parallel ap-
proach) or tasks are distributed and data is communicated on request (demand-driven
approach). The data parallel approach is scalable with respect to problem size and can
render arbitrarily large models, but it is difficult to spread the processing evenly over the
processors, due to ’hot spots’ in the scene, such as light sources, and due to the uneven
distribution of processing over time. Dynamic adaption of the data distribution over the
processors is complex and introduces extra overhead.
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The demand-driven approach achieves a better load balance but the efficiency of
this approach is very much dependent on the amount of coherence that can be found in
subsequent data requests. Assuming that data retrieved from other processors is cached
locally, in highly complex scenes coherence between subsequent data request will be
low and therefore caching is of less use. Hybrid approaches try to combine data-parallel
and demand-driven scheduling in such a way that non-coherent data tasks are scheduled
data parallel and data coherent tasks are scheduled demand-driven [32, 14, 25]. The
demand-driven tasks then compensate for workload variations in the data parallel task
distribution. However, when the scene is complex and the amount of available data
coherence is low, the hybrid scheduling suffers a loss of suitable demand-driven tasks
and falls back to the (in-)efficiency of the data-parallel approach.

It turns out that for both the demand-driven approach and the data parallel ap-
proach, the efficiency is very much dependent on the amount of data locality that can
be achieved. When it is not possible to partition the data and tasks such that requests
for remote data are minimal, then additional methods are needed to reduce data or task
communication, for instance by locally representing remote data in a compact format
or by caching intermediate results. In this paper we will review some of these methods
and discuss their application to parallel rendering. We will do this in the context of a
ray tracing algorithm using diffuse sampling, such as described in [39], but the methods
are applicable to other ray tracing and radiosity algorithms as well. Data locality tech-
niques are also useful in single processor configurations to reduce the amount of data
transfers between the different levels of caches, memories and discs [23].

The paper is structured as follows. We first discuss several methods to improve
data locality such as data partitioning, access coherence, impostor techniques and (ir-
)radiance caching (section 2). Then we present some experiments with incoming radi-
ance caching (section 3) and draw some conclusions (section 4).

2 Data Locality

Data locality is a measure of how well data can be selected, retrieved, compactly stored,
and re-used for subsequent processing tasks. Finding a good partitioning to distribute
data is a first step to successfully associate data with specific tasks. A next step is to
optimise access coherence, i.e. to find an optimal ordering of the computations to min-
imise the number of times data items will have to be re-communicated or re-read from
disc. Alternatively, data can be compressed or replaced by a more compact representa-
tion, in particular for remote objects and environments, when an exact representation is
not required.

2.1 Data Partitioning

When data has to be distributed, a first issue is how scene data should be divided over
the processors. Initial data distributions can have a strong impact on how well the sys-
tem performs. The more evenly the workload associated with the data is distributed, the
less idle time is to be expected. In order to be able to distribute a part of the scene, for
instance a cell of an octree spatial subdivision, first the expected cost per voxel should
be computed. In a second step, the voxels can be distributed across the processors, pre-



serving data locality as much as possible, while at the same time attempting to equalise
the cost per processor.

Some initial research has proved that it is possible to estimate the cost of a single
ray traversing an octree structure [17, 36, 27]. The number of intersection tests for each
node in the octree can be estimated by averaging the depth of the leaf cells of the octree,
weighting these depths by the surface area of the cells, and computing the probability
that a ray traversing that voxel intersects one of the objects contained within the voxel.
Alternatively, the cost per voxel could be predicted by estimating the number of rays
that would traverse each voxel during rendering [26]. Such an algorithm would take
into account the distribution of objects over the scene, as well as the view point and
the position of light sources. The data distribution would therefore be tailored to the
particular view point chosen.

Given an initial load estimation, a data distribution may be devised such that as
much object coherence as possible is retained. A possible algorithm to distribute octree
branches over processors may use the cost per voxel information to split off separate
branches. The nearer to the root of the tree this split occurs, the more coherence be-
tween sub-parts of the scene is preserved. However, it should be noted that preserving
coherence and equalising the estimated workload per processor are conflicting goals.

A different and slightly more complicated algorithm is called region growing [38],
where each processor receives a seed voxel. At each subsequent step, a voxel adjacent
to one of these seed voxels is assigned to the same processor. The estimated workload
is distributed evenly by adding the adjacent voxel with the highest cost function to the
processor with the lowest accumulated cost function. This process is continued until all
voxels are assigned to a processor.

Octrees and grids are axis-aligned subdivisions that do not always segment a model
in an optimal way. More data coherence may be obtained with a space partitioning that
is aligned with the internal structure of the model. The BSP-tree method uses planar
surfaces of the model to derive a binary space partition. Several strategies have been
developed to choose the most suitable faces as primary dividing planes and to optimise
the data coherence within the resulting space partitions (preferably cubic and not long
and thin) while keeping the number of split surfaces as low as possible [5, 21, 37].
In [20] a clustering algorithm is applied to the surfaces in a building environment to
align the partitioning with the structure of the floor plan.

A very fruitful approach is to partition the scene on the basis of inter-visibility [37].
Energy transfer can only take place between surfaces that are mutual visible. A visibil-
ity preprocessing can be used to create local clusters and to calculate visibility between
these clusters. This information can be stored in a visibility graph with the clusters as
nodes. The importance of energy transfer between surfaces can be taken into account
such that two surfaces with a high ‘form-factor’ interaction are likely to end up in the
same cluster [6].

2.2 Access Coherence

Cache coherence may be improved by re-ordering computations, e.g. by temporarily
suppressing computations that need data which is locally not available, or by grouping
tasks that share similar data needs. Deviating from the sequential order will always



introduce some extra storage of state information. This is not uncommon in parallel
implementations where tasks are migrated or tasks are temporarily suspended waiting
for data to arrive. Re-ordering may be accomplished for instance by grouping shadow
rays or by performing ray tracing in breadth-first order [12]. Grouping primary rays
together allows an efficient selection of data and guarantees a high cache access coher-
ence [24, 33]. In fact, any multi-pass or pre-processing may be viewed as a re-ordering
of computation (compared to a full MC ray tracing algorithm). A separate light pass
may significantly increase ray coherence at the cost of the storage of a photon map or
radiance cache.

Finding an optimal traversal in the visibility graph to minimise the number of cluster
swappings during one interaction of a progressive radiosity pass can be approached as a
travelling salesman problem [19]. An other scheduling strategy is to use the voxels of a
spatial subdivision as a ‘scheduling grid’ [23, 22]. In this approach, rays are processed
in voxel order. A voxel with object data is only loaded (or created) when enough work
is available or when its contribution to the final rendering wins over processing other
data voxels. The advantage is that rays that pass through the same voxel are processed
together, even if their origin or descend is different.

Beside the cost for storing extra state information, there may be a penalty involved
for not taking the optimal order of computations. For instance, deferring some shooting
tasks in progressive radiosity may lead to a slower convergence [6].

2.3 Impostor Techniques

Even with a suitable data partitioning and coherent cache access, interaction between
data partitions may not be completely avoided, leading to either data or task commu-
nication. The amount of data communication can be reduced by replacing the remote
data with some local ‘placeholder’. This may be a simplified representation or an image
‘impostor’ of the real data. One of the first applications of this idea was the introduc-
tion of so-called ‘virtual walls’, separating planes between partitions placed at strategic
places (e.g. portals) to serve as interface between two partitions [41, 2]. A drawback is
that when only radiosity is transferred through the virtual walls, directional information
will be lost.

Virtual interfaces [1, 29] borrow the data partitioning from the virtual walls tech-
nique but are an improvement in that directional information is maintained. Each source
patch first shoots its energy into its own environment. Then it is passed to the neighbour-
ing partitions together with a visibility (or shadow) mask. This mask is a discretisation
of the hemisphere around the source patch. The directions that are blocked by objects
in the processed environments are disabled. The data transferred to the neighbouring
partitions is thus exact in position and size but is approximate in the discretisation of
the directions left open after blocking of the light by intermediate geometry. A similar
technique using the convolution of a blocking mask and an incoming light source to
project shadows onto surfaces is proposed in [35].

Environment mapping [3, 10] is an other variant on the virtual walls technique.
Each partition or object cluster is surrounded by an environment map to represent the
incoming intensity from the rest of the scene. Instead of fetching data from remote pro-
cessors, or migrating tasks to other processors, a simple table lookup is enough to find



Fig. 1 Clusters of small objects, such as the synthesiser enlarged in the inset, may be fetched at a
lower resolution for the chosen viewpoint.

an approximate shading value which would otherwise be very costly to compute [28].
As the environment map is created from only one arbitrary view point within the parti-
tion and used for any ray origin in this partition, it will introduce errors which show up
in the form of displaced reflections. When used solely for diffuse interreflection, this
may however not prove to be much of a problem. The accuracy can be controlled by in-
creasing the radius of the environment map with respect to the size of the local partition.

Geometric simplification is another successful strategy. The basic idea is that if a
complex object or a densely populated part of the scene is at some distance, then without
sacrificing accuracy, the complex geometry can be replaced with a simplified geometry
carrying the same energy and having similar reflection and emission properties.

An example where the full resolution of geometry data is not always required is
given in figure 1. Assuming that the objects are distributed across a number of proces-
sors, the processors responsible for the area where the viewpoint is, may occasionally
need to access data that is far away. The knobs on the equipment at the back of the room
could be fetched at a far lower resolution without affecting the quality of the sampling.

There are many different ways in which geometry can be simplified or stored at
different resolutions. The methods that should be considered are ones where geometry
is replaced with simpler geometry and techniques where geometry is replaced with
shading information (impostors, grouping of patches).

Geometric simplification algorithms attempt to reduce the polygon count of objects
by replacing large groups of small surfaces by a small group of larger surfaces [13,
8]. Such algorithms usually do not replace different surface reflectance properties by
an average BRDF. However, preserving average material properties is important for
geometric simplification algorithms to be useful in realistic rendering algorithms.

This issue was addressed by some of the grouping and clustering techniques devel-
oped for hierarchical rendering. A locally dense occupation of small polygons, e.g. a
plant, can be replaced by an enclosing volume that inherits the same global shape, re-
flection, emission, absorption or transparency properties as the original. Several meth-
ods have been developed differing in the way they represent these properties, either as
shading transfer [15], transmission transfer [34] or reflection distribution [31]. Most



of these techniques where originally developed to improve the sampling quality, as the
intersection of a complex object is not only expensive but also prone to aliasing.

Textures can be used to replace detail geometry, e.g. to represent ornamental dec-
orations on a fac¸ade. If the geometry is simplified to a single polygon or box and the
texture represents the complete geometry then we talk about image impostors [7, 18].
Image impostors work in much the same way as environment maps, the difference be-
ing that rather than replacing the surroundings of an object with a box plus texture map,
the object itself is replaced with a simple cube plus texture map. Therefore, impostors
borrow from environment mapping in construction and from geometric simplification
in usage.

Image-based rendering techniques may also be viewed as impostor techniques, as
they can represent the incoming radiance from a scene for a certain region of view points
and directions. However, the storage costs of these techniques are still prohibitive.

2.4 Irradiance Caching

The disadvantage with impostor techniques is that they all require a pre-processing
stage, and sometimes even require user intervention, which makes them slightly awk-
ward to use. A possible method to overcome this, is to build a data structure on the fly.
For instance, when a processor holds part of the scene and for reflection calculations
has to sample its environment, then either ray tasks are submitted to other processors or
remote data is requested, but in both cases the query is expensive. Storing the results of
these queries allows us to re-use this information for rays in similar directions. Thus for
subsequent rays the data structure is queried. If there is sufficient information present
in the data structure, this is used (as in environment mapping). If not, the ray task is
executed as before and when a shading result is returned, it is used for both shading the
ray and updating the data structure. The further the computation proceeds, the less com-
munication between processors will be necessary, as processors will build up an image
of what surrounds them. We term such methods “directional irradiance caching” [9].
The following section describes an implementation of this technique for the Radiance
program.

A suitable data structure to store such incoming radiance values is a 5D tree, adap-
tively subdivided both on position and direction. Each node is subdivided when the
number of averaged radiance values exceeds a certain threshold. Such a tree struc-
ture has been used to predict important sampling directions and therefore minimises
the amount of time spent on directions that do not substantially contribute to the final
shading [16].

Instead of storing the incoming radiance (or field radiance function), also the re-
sulting irradiance values for all directions could be stored. Irradiance at a point on a
surface is the cosine-weighted integration of the incoming radiance over all directions
of the hemisphere. In case of diffuse reflection the radiance at that point is then easily
computed by multiplying the irradiance with�=�. The irradiance distribution function
is much smoother than the radiance distribution function and can be more compactly
represented [11]. However, it requires a preprocessing as it is more complex to adap-
tively built this representation (unless all incoming radiance values are stored as well).

Other methods could be borrowed from image-based rendering techniques with re-
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Fig. 2 The surroundings of a voxel are discretised into a full sphere using a quadtree. The right
image shows what a fully developed cache may look like for the voxel shown in figure 3.

spect to compact representation of incoming radiance values from different directions
and for a specified region of view points.

3 Directional Irradiance Caching

In this section we describe some experiments with an implementation of a directional
irradiance cache within the Radiance lighting simulation package [39].

3.1 Radiance

The ray tracing method employed in the Radiance package is an extended form of ray
tracing which also samples the diffuse interreflection in a scene. This diffuse reflection
at a point is calculated by constructing a hemisphere over the point and sampling a large
number of directions over this hemisphere. The number of rays to accurately sample
the diffuse interreflection can be very high. To reduce the number of rays Radiance
uses two methods, an adaptive sampling method to concentrate the sampling effort in
directions with a high variance, and a radiance cache to store irradiance values com-
puted earlier [40]. When a new intersection is found and if sufficient irradiance values
are stored in its vicinity, instead of sampling the diffuse reflection, a new irradiance
estimate is obtained by interpolating some of the cached irradiance values. The validity
of this principle is based on the fact that diffuse reflection tends to vary slowly over a
surface. Moreover, the error introduced by the interpolation can be kept within bounds
by specifying a maximum radius in which the cached value is valid.

The directional (incoming) radiance cache method that we propose can be used in
conjunction with the above interpolation method. Instead of storing the end result of the
hemisphere sampling, it stores the incoming radiance values as sampled by the diffuse
rays.



3.2 Directional Cache

In our implementation we associate one cache with each leaf node of an octree spatial
subdivision. The directional cache is created on the fly and is adaptively subdivided in
latitudinal and longitudinal directions, resulting in a quadtree tree structure (figure 2).
Each node of the tree represents a solid angle and stores an average intensity, the num-
ber of rays (samples), and a variance value. Each leaf node is subdivided whenever
its ‘samples’ value equals a specified minimal number. This way, we ensure that the
average intensity stored in a leaf node is mainly composed of intensity values obtained
by rays traced within the leaf node’s own solid angle1. When the solid angle covered
by a node is small enough, the node steps into a second stage. In this stage leaf nodes
in the tree are subdivided using variance as a criterion. The reliability of the stored
variance depends on the number of samples from which it was calculated. For this rea-
son, a leaf node is subdivided only when it contains enough samples and the variance
between these samples is considered high. Node subdivision is constrained by a maxi-
mum depth. When a given cache partition is sufficiently sampled, no further sampling
in that direction will be done, and the cache values can be re-used for subsequent rays
that are sampled in that direction.

However, just like the environment map, we do not use the cache for rays that find
an intersection within a specified radius from the centre of the node. As the rays’
origins may be distributed over the cell, the cache will not give an accurate prediction
for rays that find an intersection nearby. The cache therefore is only used to represent
the environment at a certain distance of the node. Local geometry - which in general
will have a significant impact - is always sampled accurately.

Tracing diffuse rays is thus performed in stages. Each ray is traced locally, until ei-
ther an intersection is found, or the ray leaves the local neighbourhood (see figure 3). If
the ray is not considered to be local anymore, the directional cache is read to determine
whether the information in the cache is accurate enough for the ray’s direction. If this
is the case, the directional cache provides an estimate for the shading result of the ray.
Otherwise, the ray needs to be traced.

Controlling the size of the radius with respect to the size of the voxel provides a
convenient way of trading accuracy for speed.

3.3 Implementation and Results

In order to measure the effectiveness of the directional cache, the cache was imple-
mented in the Radiance program and used in combination with Radiance’s own radi-
ance cache. Several tests were performed using different quality settings, in line with
values recommended for Radiance. A high quality setting was chosen to serve as a
reference. The scene used to evaluate the directional cache with these settings, is the
well-known conference room, as depicted in figure 4. All images were rendered at a
resolution of512 x 512, and filtered to a resolution of256 x 256.

Table 1 shows the reduction in number of intersection tests (performance) and ren-
dering time, obtained with the directional cache. A mean squared error (MSE) was

1Upon subdivision, only the average intensity of the parent node is copied, the ‘samples’ value is set to
one.
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Fig. 3 When reaching the perimeter of locality without intersecting an object, only in important
directions the sampling is continued. The remainder of the rays are estimated by reading the
cache.

Fig. 4 The Conference Room.



Quality Radiance Directional Cache
Intersection Tests Time Intersection Tests Time Gain

Accurate 257,103,496 16.6 222,453,281 14.2 13.5% 14.8%
Fast 119,065,157 5.4 115,040,115 5.1 3.4% 5.8%
Low 106,789,984 4.4 104,533,101 4.3 2.1% 3.8%

Table 1 Performance, counted both in total number of intersection tests and hours of calculation
time needed. The percentages in the last column represent the performance gain in number of
intersection tests and time respectively. The reference image took 714,815,976 intersection tests
to render.

Quality Radiance Directional Cache
Accurate 3.37 4.78

Fast 7.10 8.45
Low 9.59 12.36

Table 2Quality comparison for each of the quality settings using the Daly method. The numbers
give the mean squared error (MSE) for each of the rendered images, compared with the reference
image.

Quality Directional Cache Cache hit
Diffuse rays Local Global Lookup

Accurate 4,549,780 2,044,615 982,182 1,522,983 60.8%
Fast 573,027 214,636 191,406 166,985 46.6%
Low 223,889 63,849 105,828 54,212 33.9%

Table 3Number of rays shot for each of the three quality settings.

computed based on the perceptional Daly model [4, 30], to give an indication of how
the images perceptually differ from the reference image. Table 2 shows the results of
this quality comparison, and figure 5 shows the actual Radiance and Directional Cache
images. Table 3 gives the total number of diffuse rays traced for the conference room
model. This number is subsequently split into a component which counts the number
of rays that intersect with a nearby object, the number of rays that are traced outside the
local perimeter (because the cache was not sufficiently filled for that direction) and the
number of rays that could be approximated by a cache lookup.

The cache hit ratio is defined as the number of cache lookups over the number of
rays that reached the perimeter (global plus lookup). As can be seen, the cache gives
a reduction of up to 60% in the number of global rays, which for a parallel implemen-
tation would greatly reduce the communication costs. The MSE figures show that the
directional cache looses some of the accuracy obtained with standard Radiance. Vi-
sual artifacts, however, are hardly noticeable, which may be partly due to the linear
interpolation of Radiance’s own cache.

Beside the reduction in global rays, the method has several other advantages. Like
the environment mapping algorithm, the cache builds a ‘filtered’ representation of the
environment and reduces the over-sampling of far-away areas that do not contribute
that much. Moreover, the reduction in global rays is for the bigger part realised towards
the end of the rendering process, which is advantageous in parallel rendering, because
non-local rays cause long termination delays [25].
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Fig. 5Detail of images rendered using standard Radiance (left) and the Directional Cache (right).

4 Conclusion

Model complexity has become a primary motivation to use distributed processing. But
to achieve some efficiency and scalability we need data locality methods that optimally
partition the data and that compactly represent remote data. In the context of rendering,
this often means conversion of geometry and lighting into radiance information. In this
paper we have given an overview of data locality methods for parallel rendering and we
have focused on a directional cache to store and re-use incoming radiance values. We
have presented the results of an implementation in the program Radiance. Although the
number of non-local rays is drastically reduced, the overall effect on the cache efficiency
and the data communication in a parallel implementation still has to be assessed.
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