
Painting in High Dynamic Range

M. Colbert a,*,1, E. Reinhard b,a, C.E. Hughes a,2

a School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
b Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, United Kingdom

Received 15 November 2006; accepted 14 March 2007
Available online 10 April 2007

Abstract

We present a novel approach that allows users to intuitively and interactively manipulate High Dynamic Range (HDR) images using
commonly available Low Dynamic Range (LDR) displays. This solves the problem of how to draw with contrasts that are much larger
than the monitor can display. Whereas commercial HDR-enabled drawing programs manipulate tone mapped representations of HDR
images, we provide an intuitive brush interface that supports interaction with the unmapped HDR imagery. Our approach introduces
two new brush constructs to a typical virtual painting interface, such as Adobe Photoshop. First, we present a brush that locally adjusts
the display of the HDR image to a dynamic range specified within a real-time, interactive, local histogram of the region around the cur-
sor. This affords precise, quantitative control of the HDR contrast values produced by the brush. Second, we demonstrate a brush that
uses the perception of glare as the underlying basis for determining the contrasts painted onto the HDR image, giving artistic control
over the HDR contrasts. By maintaining an HDR image, the result is available for further manipulation and processing by algorithms,
such as those used in image-based rendering, for which an LDR representation is inadequate. Finally, we use the Graphics Processing
Unit to provide real-time visual feedback for the effects of each image manipulation.
� 2007 Elsevier Inc. All rights reserved.

1. Introduction

Conceptually, High Dynamic Range (HDR) imaging
can be viewed as using floating point numbers to represent
radiance values, providing a wider gamut of color com-
pared with the standard 8-bit, Low Dynamic Range
(LDR), counterparts [21]. High dynamic range imaging
affords fascinating new opportunities in imaging. For the
first time, it is possible to capture, manipulate, and archive
absolute radiance values, rather than quantized and
clamped relative values. Imaging may therefore transform
itself into a quantitative discipline, which has so far not
been possible.

Although the conceptual difference between conven-
tional imaging and high dynamic range imaging is straight-
forward, the entire imaging pipeline requires a redesign.
Techniques have emerged to capture HDR images using
multiple exposures [5,17,19] or with specially designed
hardware [1]. File formats and encoding schemes have
emerged to enable storage of HDR data [15,18], and a sig-
nificant amount of research has gone into preparing HDR
images for display on conventional display devices
[5,20,21]. Applications that make direct use of HDR data
are also emerging, including image-based lighting [4], and
image-based material editing [13].

Although most image editing software can now read and
write HDR images, drawing with unquantized radiance
values presents a significant problem that has yet to be
addressed. The reason that HDR images are difficult to
manipulate stems from the fact that typical display devices
cannot display the full range of values found in HDR
images. This means that the radiance values that are to
be drawn cannot be displayed directly, but have to be
mapped to the display range first.

1047-3203/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2007.03.002

* Corresponding author. Fax: +1 407 823 5419.
E-mail address: colbert@cs.ucf.edu (M. Colbert).

1 Partially supported by the UCF I2 Lab Fellowship Program & the
Media Convergence Lab.

2 Partially supported by the National Science Foundation (SES0527675)
and the Army Research Institute VIRTE Program.

www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 18 (2007) 387–396



The implications are that picking a color cannot proceed
in the normal way. Similarly, the visualization of images
using tone reproduction operators leads to a cumbersome
and ineffective way to draw HDR images. The latter means
that the color selected for drawing is not necessarily the
same as the color that is reproduced on the monitor, mak-
ing drawing an unintuitive process.

In this paper, we present a solution to both problems
(Fig. 1). Image regions around the cursor are visualized in
an intuitive manner, and picking colors is split into a two
stage process. First, the user selects hue and saturation values
in the same way that all color pickers allow hue and satura-
tion to be selected. The luminance value, however, is selected
with the aid of a histogram which is computed over a region
around the cursor. By clicking on a position within the histo-
gram, the user is able to select luminance values that are
related to the image in a quantitative and meaningful way.

As not all image editing applications are quantitative in
nature, we also present an artistically motivated approach
to drawing with high dynamic range imagery. This tech-
nique is aimed to be more intuitive for artists, while still
overcoming the limitations of tone reproduction, which is
a necessary step to display the results.

With these two very different approaches, one quantita-
tive and one artistic, we are for the first time able to give users
of drawing programs the ability to truly interact with high
dynamic range images. Our technique uses the Graphics Pro-
cessing Unit (GPU) to perform a painting operation at an
average of 1300 Frames Per Second (FPS) on a 512 · 768
sized image rendered with an nVidia GeForce 7900.

The following sections survey related work in HDR
image editing (Section 2) and explain the tone reproduction
method we use for HDR image display (Section 3). We

present our two approaches for solving the HDR editing
problem (Section 4) as well as our implementation (Section
5). We conclude with a discussion of our algorithm’s per-
formance (Section 6) as well as possible applications for
painting in high dynamic range (Section 7).

2. Background

To our knowledge, there does not exist previously pub-
lished research on interfaces for HDR editing and manipu-
lation. However, several commercial packages, such as
Adobe Photoshop, HDR Shop, Idruna Photogenics, and
Artizen HDR, provide tools for directly painting onto an
HDR image.

Adobe Photoshop provides a limited ability to edit
HDR images, allowing the user to apply a subset of the
available filters in the software package. The interface also
has a set of proprietary tone-mappers, which allow the user
to map an HDR image to a 16-bit fixed precision image for
brush-based manipulation.

HDR Shop is a tool that allows the user to manipulate an
HDR image by specifying a linear compression for the
image, exporting the compressed LDR image to an arbitrary
LDR image editor, editing the image, and recombining the
modified image into the original HDR image. However,
the tool does not provide an integrated work flow or a real-
time feedback mechanism for the painting operation.

Idruna Photogenics provides a technique to directly
manipulate the HDR values with a brush as well as a
means to choose an HDR color value. The interface line-
arly scales an HDR image to compress the luminance range
for an LDR display. Independently, the user can choose a
color for painting from an LDR color picker. However, if

Fig. 1. Quantitative HDR painting interface. In the upper left, a hue and saturation selector is displayed and clearly visible when rendered in color; and in
the center and inset, a brush interface is provided that moves with the cursor. In the histogram, the entire luminance domain is visualized and the user
selects the luminance associated with the selected hue and saturation values. The highlighted area of the histogram represents the visualized luminance
range in which the region within the outer ring is linearly compressed and displayed. The inner ring represents the region that will be painted by the brush.
Background image courtesy of Paul Debevec.

388 M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396



users wish to operate outside the displayable color gamut,
they must use a slider bar associated with each color chan-
nel to select an HDR color. The selected color appears
either over-saturated or black, if it is out of the displayable
range of the monitor, but will appear correct if applied to a
proper linearly-scaled LDR mapping.

Artizen HDR solves the problem of manual linear scal-
ing by providing a variety of automatic, non-linear tone
mappers to view HDR images. When using locally adapt-
ing operators, such as photographic tone reproduction
[20], the interface has a noticeable delay as it re-calculates
the HDR values. Moreover, the interface does not provide
a means to paint values outside of the displayable color
gamut, as the color picker is limited to the low dynamic
range of displayable colors.

Our approach provides a brush-based interface and the
ability to paint and choose values outside of the displayable
luminance range. We offer two solutions, one for quantita-
tive and precise control and another for qualitative and
visual-based manipulation. We provide the user with suffi-
cient constructs to control the selection of HDR colors as
well as interact with the interface at an average rate of 1300
FPS on a commodity graphics card (nVidia GeForce 7900).

3. Photographic tone mapper

In editing an HDR image, the area under the cursor can
be linearly scaled to enable quantitative drawing operations,
but the remainder of the image must be tone mapped for dis-
play on conventional display devices. While recent research
has produced a large variety of tone reproduction operators,
any of which can be used to prepare images for display [21],
we have chosen the photographic tone reproduction opera-
tor [20]. This choice is based on the operator’s strong overall
performance, as shown in several validation studies
[2,6,14,16] and computational image quality metrics [24],
and the fact that it can be implemented with the aid of graph-
ics hardware [9] to support real-time applications.

Reinhard et al.’s tone reproduction is inspired by photo-
graphic practices [20], and in particular Ansel Adams’ zone
system. Each pixel in the image is reduced in dynamic
range using a measure of local contrast, similar to dodging
and burning a film negative. The operator first globally
scales the image based upon the log average of the lumi-
nance values, �Lw, and a user defined parameter, c, which
effectively sets the exposure of the HDR image:

Lmðx; yÞ ¼
c

�Lw
Lwðx; yÞ: ð1Þ

The image is then compressed in dynamic range, pixel by
pixel, using a sigmoidal compression scheme:

Ldðx; yÞ ¼
Lmðx; yÞ

1þ Lmðx; yÞ
: ð2Þ

A refinement to this basic approach, is to make this
operator locally adaptive. Here, the division is replaced
by a value that depends on a spatial neighborhood around
each pixel. A good estimator of local adaptation is afforded
by the largest region around each pixel that does not over-
lap with sharp contrasts. To find this region, a scale-space
approach is used. By computing the difference of Gaussians
(DoG) at a given scale, we can detect if the neighborhood
under the filter kernel has a sharp contrast or not. If this
value is close to zero, then no sharp contrasts were found.
If this is the case, then this procedure is repeated for a lar-
ger set of scales until the desired region is found.

The notation used for Gaussian convolution is:

Lblur
s ðx; yÞ ¼ Lmðx; yÞ � Rðx; y; rsÞ: ð3Þ

Here, R(x,y,rs) is a two-dimensional Gaussian defined
with a standard deviation of rs for the current scale, s.
The difference of Gaussians is then defined as the normal-
ized difference between Lblur

s and Lblur
sþ1 :

V sðx; yÞ ¼
Lblur

s � Lblur
sþ1

2/c=s2 þ Lblur
s

: ð4Þ

The normalization factor, 2/c=s2 þ Lblur
s , allows the function

Vs to quantify relative differences, instead of absolute lumi-
nance differences. Therefore, we search for the maximum
scale for which the relative difference of Gaussians is smaller
than some � value, which effectively finds the maximum area
of similar luminance values for the given pixel:

arg max
sðx;yÞ
jV sðx;yÞðx; yÞj < �: ð5Þ

The Gaussian blurred pixel, which is computed in this
manner, is then a measure of local adaptation. In photo-
graphic terms, this is equivalent to dodging and burning.
We can use this value directly to steer the sigmoidal com-
pression function:

Ldðx; yÞ ¼
Lmðx; yÞ

1þ Lblur
smaxðx;yÞðx; yÞ

: ð6Þ

The tone mapped luminance values compress the radi-
ance values by scaling each color channel by the ratio
between the displayable luminance, Ld (x,y), and the origi-
nal luminance, L(x,y). Effectively, the procedure com-
presses the luminance values, via the sigmoid, while
maintaining sharp contrast in highly compressed regions.

4. Algorithm

We approach the problem of choosing and painting
with color exceeding the dynamic range of the display
from two perspectives: quantitative and qualitative.
Quantitatively, the user must be able to operate on an
image by defining specific luminance ranges. Being able

M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396 389



to select and draw with absolute luminance values is crucial
for drawing programs to become useful tools within a
quantitative imaging pipeline. For instance, a lighting
designer would need to be able to set the brush to a precise
luminance value specified in cd/m2, while at the same time
being able to visualize, in real-time, the overall final
result.

On the other hand, artists are likely to be less interested
in drawing with absolute luminance values. Here, a good
interface is one that the artist is able to intuitively over-
come the differences between the image’s luminance range
and the limited display range. Qualitatively, the user must
be able to design in HDR solely based upon visual aesthet-
ics. Most artists are concerned with the final appearance of
the image, and are unaware of the exact luminance mea-
sures inherent to the brush or the image. An appropriate,
intuitive optical phenomenon such as glare may be used
to visually model changes in contrasts.

In either case, we use the same underlying framework,
whereby the tool allows the user to paint values, while
the system transparently and in real-time updates the
HDR image as well as re-compresses the image via the pho-
tographic tone mapper. The ability to continuously tone-
map the image is significant to the user interface because
it affords a reasonable impression of the pixel values, and
how they interact. Note, however, that we choose a differ-
ent visualization in the region immediately surrounding the
cursor, allowing the appropriate selection of luminance val-
ues. Hence, the cursor and the pixels surrounding it become
part of the interface for picking colors, which in our opin-
ion is the key factor that allows users to directly interact
with HDR data on LDR monitors.

Our work uses a variant of the technique by Goodnight
et al. [9], which is a real-time GPU implementation of the
photographic tone mapper [20]. The photographic tone
reproduction operator has several parameters that may
affect the appearance of the tone compressed image [20].
Therefore, we also provide the user with an interactive
interface for updating the different parameters. Specifically,
since the technique uses local tone reproduction, we pro-
vide the user with the ability to visualize different locally
adapted scales (Fig. 2).

In the following sections, we will present the quantitative
color selection, painting, and qualitative interaction tech-
niques that we have found most useful for editing HDR
images.

4.1. Quantitative color selection

Our quantitative interface provides a two-step approach
for selecting HDR color values. First, the user chooses the
hue H and saturation S of the color by using a conven-
tional hue and saturation color picker, as seen in Figs. 1
and 2. We do not need any special selection mechanism
for these color attributes, because hue and saturation in
HDR images do not span a larger range than in LDR
images.

In conventional color pickers, the user is able to select
either a value for the ‘lightness’, ‘brightness’, ‘value’ or
‘intensity’ axis. The resulting triplet, HSL, HSB, HSV,
or HSI, can then be transformed into an RGB
triplet for drawing using a conventional transform
[7,8,11].

However, in our case, we wish to select a luminance
value that is related to the image in some meaningful
way. We have found that a useful visualization is the histo-
gram, computed over a neighborhood of pixels around the
cursor. Such a histogram shows the distribution of lumi-
nance values for a region of interest, and allows a quick
assessment of the program material being visualized. By
using the location on the horizontal axis of the histogram
as a measure of luminance value, the desired luminance
value Labs can be selected without the need to resort to trial
and error.

The triplet of values now at our disposal consists of hue,
saturation, and luminance. The first two values are relative,
with hue specified as an angle between 0� and 360�, and sat-
uration defined as a fraction between 0 and 1. The lumi-
nance value is an absolute value, which requires a
redesigned transform between HSL (for hue, saturation,
and luminance) and the RGB color space that is used for
drawing.

This transform may be accomplished by introducing
a constant value for lightness, which we arbitrarily set
to 0.5. We then convert the resulting HSL (hue, satu-
ration, lightness) triplet to RGB, which now encodes
relative values. Assuming that we know the primaries
of the RGB color space of our choosing, we can com-

Fig. 2. On the left, the memorial church is shown, modified via the
quantitative controls. The luminance value for the color is selected within
the histogram and is denoted by the bar. The peak in the histogram
around the bar results from the painted region being modified by the
selected luminance value. The region around the cursor also linearly
compresses the luminance values between 28.6 and 0 cd/m2 to visualize the
dynamic range selected in the highlighted region of the histogram. On the
right is an example of the interactive scaling visualization within our
interface, where the different shades represent different scales.

390 M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396



pute the relative luminance of this RGB triplet using a
weighted average of RGB. Alternatively, if the prima-

ries of this color space are not known, we can approx-
imate the luminance of this triplet by making the
assumption that the image is given in the sRGB color
space [12]. The relative luminance Lrel is then com-
puted with:

Lrel ¼ 0:2126Rþ 0:7152Gþ 0:0722B ð7Þ

The absolute RGB values are then computed by scaling the
relative RGB values using:

R0 ¼R
Labs

Lrel

ð8Þ

G0 ¼G
Labs

Lrel

ð9Þ

B0 ¼B
Labs

Lrel

ð10Þ

The histogram approach provides a powerful and intuitive
tool for HDR image editing because it is not limited by the
dynamic range of the display. The local luminance infor-
mation provides a good measure for the different radiance
values already present within the region, so the user can
naturally choose luminance values with respect to other
existing luminance values. Additionally, the linearly scaled
display presents a visual guide for understanding the dis-
played luminance values.

4.2. Painting

For painting, we perform linear interpolation on all
pixels underneath the brush between the chosen HDR
color, i.e. the triplet (R 0,G 0,B 0), and the source image
using the opacity defined by the brush’s falloff function.
Here, a falloff function outputs a fraction between 0 and
1 representing opacity of the brush with respect to the
brush’s position, bpos, and the pixel’s position, ppos. We
detail this operation in Algorithm 1, where f is our
brush’s falloff function, and (Rp,Gp,Bp) is the pixel’s
color triplet. In our case, f is the Gaussian function,
exp(�ibpos � pposi2/2r2), where r is the radius of the
brush. However, we leave f as a generic function, since

any arbitrary falloff function will operate in a fashion
similar to our Gaussian function.

4.3. Artistic interaction

For qualitative, artistic controls, we look at the visual
cue of glare to define the mapping of an LDR color to
an HDR color. Glare is the scattering of light in the cornea,
lens, and vitreous humor that produces the ‘‘bloom’’ effect
we see around relatively bright light sources [22,23]. The
effect is commonly seen in nature as well as photography,
and therefore affords an intuitive visual representation;
albeit the user may not understand the underlying reasons
for the phenomenon.

Our interface provides a similar two-step process as with
the quantitative process. First, the user selects an LDR
color value using a standard LDR color picker, such as
an HSL color picker. Next, the user specifies the amount
of glare via a double-ringed brush, where ri represents the
radius of the inner ring, or the region that will be painted,
and ro represents the radius of the outer ring, or the region
that will be affected by glare. Since the artist can create
qualitative versions of glare in LDR painting interfaces,
commonly by performing some blurring operation on light
color values, we assume the introduction of a double-
ringed construct will not impede their creation process.
The glare effect is only introducing a similar blur-like effect
around the painted region, as seen in Fig. 3.

Vos [23] showed that appearance of glare can be mod-
eled by the affine combination of three functions, whose
domain is the viewing angle, h, between the light source
and the point on the glare effect. The first function is a
Gaussian generating spikes approximately 2–4� from the
light source. The result of the spikes is a halo effect sur-
rounding the light source. The remaining two compo-
nents represent an intensity falloff, with respect to the
glare effect, modeled via a h�2 falloff function and a
h�3 falloff function. However, the combination can be
roughly approximated by the h�2 function. In our case,
we do not have the original geometry or viewing position
associated with a picture, and thus we also approximate
the viewing angle, h, as the distance between pixels.
Therefore, if the maximum area affected by a glare effect
is known, which in our case is defined by the user

Algorithm 1 Linear painting algorithm

1: for all p in pixels do
2: a = f(bpos, ppos) . Compute the brush’s opacity
3: Rp = R 0 Æ a + Rp Æ (1 � a) . Blend the values
4: Gp = G 0 Æ a + Gp Æ (1 � a)
5: Bp = B 0 Æ a + Bp Æ (1 � a)
6: end for

M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396 391



parameter ro, the luminance value necessary to generate
the glare effect can be calculated.

We start by defining the scale as the squared ratio of the
ring radii, ro and ri.

Ls ¼
r2

o

r2
i

ð11Þ

Conceptually, if the radius of the outer ring doubles, it
would take approximately four times as much intensity of
the painted region to propagate the glare effect out to the
same distance, due to the inverse squared falloff. Therefore,
the squared relationship effectively models the growth of
the glare effect.

We also scale the HDR color by the ratio �Lw=c as a
means to adjust for the exposure setting of the photo-
graphic tone mapper. For images with a very low log aver-
age luminance, i.e. when �Lw is extremely small, we use a d
value as a minimum value for the scaling, allowing the
brush to operate even if starting from a blank image. In
this way, we produce the HDR color value from the
LDR RGB triplet:

R0 ¼ Ls �max
�Lw

c
; d

� �
R ð12Þ

G0 ¼ Ls �max
�Lw

c
; d

� �
G ð13Þ

B0 ¼ Ls �max
�Lw

c
; d

� �
B ð14Þ

When painting, we update all pixels underneath the
brush via a linear interpolation between the brush falloff
and glare effect functions with the original source image.
Specifically, we choose the maximum of the two values,
since the functions represent the opacity of the inserted
color. However, since we are using visual cues, the linear
scaling from Eq. (11) changes the appearance of the
brush’s falloff behavior. In other words, the scaling will
cause the painted region to visually appear larger than
the original, unscaled version of the same function. In
our case, we use a Gaussian falloff function for the
brush and we adjust the standard deviation variable,
r. We calculate the necessary r parameter knowing that
we want the scaled Gaussian function at point ri to be
equivalent to the unscaled Gaussian function with a

standard deviation of ri. We choose a standard deviation
of ri because a majority of the energy of the Gaussian
function should be contained within the inner radius
of the brush.

Lse
�

r2
i

2r2 ¼ e
�

r2
i

2r2
i

Lse
�

r2
i

2r2 ¼ e�
1
2

ln Ls �
r2

i

2r2
¼ � 1

2

ln Ls þ
1

2
¼ r2

i

2r2

r2 ¼ r2
i

2 ln Ls þ 1

In calculating the glare effect, we assume the center of the
brush is a point light source and has an inverse squared
falloff as the distance increases. Typically, when one adds
a point light source, the emitted radiance is added to the
existing radiance values, due to the additive nature of light.
However, we are performing a painting operation where
the light is replaced. Therefore, we use a linear interpola-
tion between the source image and glare based upon the
falloff, b. Additionally, we adjust the values by the inverse
of the falloff opacity values produced by the brush falloff
function, where the inverse for an opacity value is one
minus the original value. We require the adjustment since
we are using a point light source only as an approximation,
and we must delineate between the region that is the
painted light source and the region that is effected by glare.
Here, we also normalize the falloff with respect to the lumi-
nance scale since b is a measure of opacity and must map
between 0 and 1.

b¼ 1� exp �
kbpos�pposk

2

2r2

 ! !
max

Ls

kbpos�pposk
2
� 1

r2
i
;0

 !,
Ls

ð15Þ

The remainder of the details are presented in
Algorithm 2.

Fig. 3. Three different inner radii and their resulting glare effects. As the inner radius decreases and the glare effect increases, the dynamic range of the
luminance expands as seen in the respective histograms.

392 M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396



5. Implementation

Our implementation of painting in HDR is a hybrid
approach utilizing both the Graphics Processing Unit
(GPU) and the Central Processing Unit (CPU), whereby
painting, tone reproduction, and histogram creation oper-
ate on both processors. Specifically, the GPU is responsible
for painting, tone mapping, and displaying both the image
and image statistics, while the CPU updates the image’s
luminance log average, �Lw, as well as local histogram statis-
tics. The following details the implementation of our real-
time photographic tone mapper, our GPU-accelerated
painting interface, and the corresponding performance of
our procedures.

5.1. Real-time photographic tone mapping

Our real-time photographic tone mapper is an extension
of the work presented by Goodnight et al. [9]. The proce-
dure consists of a series of pixel shaders applied to a single
quadrilateral, whereby the output of each pixel shader has
a one-to-one correlation with a pixel in the original image.

First, we perform a pass on the GPU to scale the lumi-
nance values, as described in Eq. (1). Unlike the implemen-
tation of Goodnight et al., we perform the average
luminance calculation on the CPU. In our case, this
approach is efficient because we limit the scope of our
application to painting operations. A painting operation
only requires an update of 4r2

e pixels on the CPU, where
re is the effected radius of a painting operation and 4r2

e is
the corresponding area of a box underneath the region.

In Goodnight et al.’s implementation, the log average
luminance, �Lw, value is calculated on the GPU, but to
obtain �Lw on the GPU requires a costly reduction tech-
nique. A GPU reduction is multi-pass approach, whereby
each pass uses a pixel shader that sums its neighboring val-
ues and outputs the sum for the next pass. A subsequent
pass, with the same pixel shader, will then read the neigh-
boring values from the previous pass and output the sum
for another pass. The process repeats until eventually prop-
agating the final, summed value into one pixel position.

This expensive approach is due to the hardware design of
the GPU, whereby the processor cannot output global val-
ues as it does not have the necessary registers. Therefore, a
sequence of concurrent local operations, such as summing
the neighboring pixels, must occur to efficiently obtain glo-
bal values. In the case of reduction, typically a neighbor-
hood of 4 values is chosen, thereby reducing each image
dimension by half. In total, this would require approxi-
mately log2n passes, where n is the maximum of the width
or height of the image. This is more expensive than our
approach, since we can perform significantly fewer compu-
tations on the CPU.

In each subsequent pass, the pixels whose normalized
difference of Gaussians (DoG) is greater than the � thresh-
old, as defined in Eq. (5), are compressed using the sigmoid
function, Eq. (6). The remaining pixels are tagged, so they
can be compressed when the appropriate scale, smax, is
found or the user-defined number of scales is reached.

For efficient calculation of the DoGs on the GPU,
Eq. (5), we first must compute the convolution of a Gauss-
ian with a luminance image, Eq. (3). We employ a 4-pass
approach that uses the separability of a two-dimensional
Gaussian convolution to accelerate the computation. In
the first pass, we pack 4 neighboring luminance values
along the x-axis of the image into a single RGBA value.
This reduces the number of texture look ups by a factor
of 4 during the next pass, where the pixels are convolved
with the Gaussian kernel. Without using the packing step,
kernel sizes greater than 30 become too expensive for the
GPU and performance is no longer real-time. In the
remaining two passes, we perform the packing and convo-
lution along the y-axis using the output of the x-axis con-
volution. We then observe that Eq. (5) looks at the DoG
with respect to only its scale and the next scale, i.e. Lblur

s

and L blur
sþ1 . Thus, we can always save the computed L blur

sþ1

image for a subsequent pass. Hence, for an arbitrary scale,
s, we have Lblur

s from a previous pass and only need to com-
pute Lblur

sþ1 . In the special case of the first scale, Lblur
0 is equiv-

alent to the unfiltered luminance image.
Therefore, we need to perform only one Gaussian con-

volution for each scale used in the tone reproduction.

Algorithm 2 Glare-based painting algorithm

1: R0 ¼ Ls �maxð�Lw=c; dÞ R . Scale from brush size and exposure
2: G0 ¼ Ls �maxð�Lw=c; dÞ G
3: B0 ¼ Ls �maxð�Lw=c; dÞ B
4: for all p in pixels do

5: d2 = i(bpos � ppos)i2

6: q = exp(�d2/2r2) . Compute the brush falloff
7: b ¼ ð1� qÞmaxðLs=d2 � 1=r2

i ; 0Þ=Ls . Compute the glare falloff
8: a = max(b, q)
9: Rp = R 0 Æ a + Rp Æ (1 � a) . Blend the values

10: Gp = G 0 Æ a + Gp Æ (1 � a)
11: Bp = B 0 Æ a + Bp Æ (1 � a)
12: end for

M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396 393



The one exception is the last scale, since all remaining pix-
els will be compressed with the already calculated Lblur

smax
con-

volution no matter the result of the DoGs. Thus, no
convolution operation is necessary in this pass.

5.2. GPU-accelerated painting

In either the qualitative or artistic approach, the evalu-
ation of the painting operation is performed as described
in Algorithms 1 and 2, whereby for all pixels, we perform
linear interpolation between an HDR color value and the
source image, using either the brush falloff function or
the glare effect function. However, as mentioned in the pre-
vious section, we limit the affected pixels to the region
beneath the brush, whose area is denoted as 4r2

e . In the
quantitative approach, we define the affected radius, re,
by setting the scaled brushes’s falloff function to a small
value, �, and calculating the necessary distance for the func-
tion to reach �, giving:

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

i ðln Ls � ln �Þ
q

: ð16Þ

In the artistic approach, the affected region is defined by
the outer ring, and therefore the outer radius ro is used
for the effected radius, re.

Additionally, the painting operation is performed on
both the CPU and the GPU. On the CPU, we maintain a
luminance image within main memory, and perform a
painting operation simply by running either the linear or
glare painting algorithm over the effected region. On the
GPU, we maintain a frame buffer, or a GPU construct
for reading and writing image data. We execute a pixel sha-
der, defined by the inner loop of either algorithm, to update
the effected pixels.

We perform the operation as such for two reasons: his-
togram creation and finding the luminance log average, �Lw,
of the image. Our hybrid approach reduces the amount of
bus traffic and decreases CPU/GPU stalls by better utiliz-
ing the multi-core processors available in commodity hard-

ware. Maintaining the luminance information on the CPU
also provides a fast way to gather the image and histogram
statistics, since we can scan the region surrounding the
brush and calculate the corresponding statistics. A pure
GPU approach would required the histogram to be built
via Occlusion Queries [10]. This approach requires a pass
for each bucket in the histogram, thereby making high
fidelity histograms operate at less than real-time
performance.

Therefore, we use our multi-core processor approach,
as depicted in Fig. 4. Upon receiving a mouse input,
we instruct the GPU and another CPU core to execute
the painting operation. We prevent stalls and allow the
driver to utilize more CPU resources by leaving the
primary core free with respect to the painting calcula-
tion. After completing the painting operation on both
the GPU and the CPU, the statistical information com-
puted on the CPU is sent to the GPU, so the GPU
can perform the necessary tone mapping operation on
the modified image. Concurrently, the CPU updates
the histogram information around the brush. Finally,
we overlay the tone mapped image with a visual repre-
sentation of the histogram and wait for further user
input.

6. Performance

Our interface performs at approximately 1300 FPS
on a 512 · 768 image, with a brush radius of 15 pixels,
running on an nVidia GeForce 7900 using a 2.8 GHz
Intel Pentium D processor with 1.0 GB of RAM. We
found similar performance with the Grace Cathedral
image, where at 1536 · 768 pixels our algorithm per-
formed at approximately 800 FPS. The speed of our
implementation is limited by two factors: image size
and brush size.

The image size changes the performance of the tone
mapping and the painting operation. During tone repro-

CPU Core 1

CPU Core 2

GPU

Paint Image

Update Scratch Update Histogram

Tone-map
Display
Histogram

Display
Image

Stalled Stalled Stalled Wait

Wait

Wait

Mouse
Input

Fig. 4. Process flow of the painting interface. The flow starts from a mouse input on the main thread of the program, executing in the primary core. Once
triggered, the image is painted on the GPU while the CPU updates the luminance values. Upon synchronization, the second thread reports the log average
of the luminance values and sends the value to the GPU to perform the tone mapping operation. Concurrently, the second thread updates the local
histogram information and reports the data to the main thread. Finally, the histogram information is displayed on the GPU and the program waits for the
next input from the user.

394 M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396



duction, the GPU must perform 5(sgmax � 1) + 2 passes,
where sgmax is the user-defined maximum number of
scales. In the first pass, the luminance must be scaled.
The Gaussian convolution (4 passes) and the sigmoid
compression and scale evaluation (1 pass) must be per-
formed for each scale, up to the global maximum,
sgmax � 1. In the last pass, no convolution operation is
necessary, thus only one pass is required for the compres-
sion evaluation. Overall, most passes invoke relatively
simple pixel shaders and take little time to execute on
newer graphics cards. However, there is a fill rate depen-
dence, whereby the pixels are displayed as fast as the
GPU can output them. Thus, for each pass on the
GPU, all pixels must be redisplayed, making the opera-
tion dependent on image size. In the painting operation,
the GPU does one additional pass over the image, as dis-
cussed in the previous section. However, this operation is
trivial in comparison to the 5(sgmax � 1) + 2 passes for the
tone reproduction.

Brush size is probably the more constrictive of the two
performance bottlenecks. When the brush size increases,
there does not exist an effect on the GPU, since it performs
all operations over all pixels. However, the increased brush
size directly affects the amount of time the CPU requires to
update the luminance image in main memory, and subse-
quently the luminance log average, �Lw, as well as local his-
togram statistics. Typically, painting operations involving
over 160,000 pixels cause reduced performance in our
implementation.

7. Conclusions and future work

We present an approach for HDR interaction, manipu-
lation, and editing that is novel from both a quantitative
and artistic perspective. The use of a double-ringed brush
in combination with real-time histogram feedback provides
a sufficient basis for building similar tools within commer-
cial painting packages. The importance of our work is that
it provides the capability to incorporate image editing soft-
ware into a fully quantitative imaging pipeline, which was
not previously possible. The novelty of our work relates
to the design of a user interface that in a meaningful and
intuitive manner overcomes the limitations of conventional
display devices in the context of image drawing
applications.

While we establish our ideas within a painting inter-
face, we believe that the same constructs can be applied
to lighting or material design tools. Specifically, material
design tools, such as BRDF-Shop [3], provide a painting
interface for generating bidirectional reflectance distribu-
tion functions (BRDFs). The increased fidelity of HDR
editing would endow the interface with more explicit
control over the amount of reflectance of a painted
highlight.

We demonstrate that our quantitative and artistic
HDR editing techniques are capable of running at an
average of 1300 FPS on commodity hardware. Even

though we present our work in the image editing
domain, since it is directly applicable to image-based
lighting techniques and image-based material editing,
our work lends itself to other applications, such as
HDR lighting design and HDR material design, making
painting in high dynamic range a powerful tool for
future research.

References

[1] Manoj Aggarwal, Narendra Ahuja, Split aperture imaging for high
dynamic range, International Journal of Computer Vision 58 (1)
(2004) 7–17.

[2] Michael Ashikhmin, Jay Goral, A reality check for tone mapping
operators, ACM Transactions on Applied Perception 4 (1) (2007).

[3] Mark Colbert, Sumanta Pattanaik, Jaroslav Křivánek, BRDF-
Shop: Creating physically correct bidirectional reflectance distribu-
tion functions, IEEE Computer Graphics & Applications 26 (1)
(2006) 30–36.

[4] Paul Debevec, Image-based lighting, IEEE Computer Graphics &
Applications 22 (2) (2002) 26–34.

[5] Paul Debevec, Jitendra Malik, Recovering high dynamic range
radiance maps from photographs, in: SIGGRAPH ’97: Proceedings
of the 24th Annual Conference on Computer Graphics and Interac-
tive Techniques, New York, NY, USA, 1997, ACM Press/Addison-
Wesley Publishing Co., pp. 369–378.

[6] Frédéric Drago, William L. Martens, Karol Myszkowski, Hans-Peter
Seidel, Perceptual evaluation of tone mapping operators with regard
to similarity and preference. Technical Report MPI-I-2002-4-002,
Max Plank Institut für Informatik, 2002.

[7] James D. Foley, Andries van Dam, Steven K. Feiner, John F.
Hughes, Computer graphics principles and practice, second ed.,
Addison-Wesley, 1990.

[8] Adrian Ford, Alan Roberts, Colour space conversions, 1998.
[9] Nolan Goodnight, Rui Wang, Cliff Woolley, Greg Humphreys,

Interactive time-dependent tone mapping using programmable
graphics hardware, in: EGRW ’03: Proceedings of the 14th Euro-
graphics workshop on Rendering, Aire-la-Ville, Switzerland, Swit-
zerland, 2003, Eurographics Association, pp. 26–37.

[10] Simon Green, Image processing tricks in OpenGL, Games Developer
Conference (2005).

[11] Donald Hearn, M. Pauline Baker, Computer graphics with OpenGL,
third ed., Prentice Hall, 2003.

[12] ITU, International Telecommunication Union ITU-R Recommenda-
tion BT.709, Basic Parameter Values for the HDTV Standard for the
Studio and for International Programma Exchange, Geneva, 1990.

[13] Erum Arif Khan, Erik Reinhard, Roland W. Fleming, Heinrich H.
Bolthoff, Image-based material editing, ACM Transactions on
Graphics 25 (3) (2006) 654–663.

[14] Jiangtao Kuang, Hiroshi Yamaguchi, Garrett M. Johnson, Mark D.
Fairchild, Testing HDR image rendering algorithms, in: Proceedings
of IS& T/SID 12th Color Imaging Conference, Scottsdale, 2004, pp.
315–320.

[15] Greg Ward Larson, LogLuv encoding for full-gamut, high dynamic
range images, Journal of Graphics Tools 3 (1) (1998) 15–31.

[16] Patrick Ledda, Alan Chalmers, Tom Troscianko, Helge Seetzen,
Evaluation of tone mapping operators using a high dynamic
range display, ACM Transactions on Graphics 24 (3) (2005) 640–
648.

[17] S. Mann, R.W. Picard, Being undigital with digital cameras:
extending dynamic range by combining differently exposed pictures,
in: IS & T’s 48th Annual Conference, Society for Imaging Science and
Technology, Washington, DC, 1995, pp. 422–428.

[18] Rafal Mantiuk, Grzegorz Krawczyk, Karol Myszkowski, Hans-Peter
Seidel, Perception-motivated high dynamic range video encoding,
ACM Transactions on Graphics 23 (3) (2004) 733–741.

M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396 395



[19] Tomoo Mitsunaga, Shree K. Nayar, Radiometric self calibration, in:
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, Fort Collins, CO, June 1999, IEEE, pp. 374–380.

[20] Erik Reinhard, Michael Stark, Peter Shirley, James Ferwerda, Photo-
graphic tone reproduction for digital images, in: SIGGRAPH ’02:
Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, ACM Press, New York, NY, USA, 2002, pp.
267–276.

[21] Erik Reinhard, Greg Ward, Sumanta Pattanaik, Paul Debevec, High
dynamic range imaging: acquisition, display, and image-based light-
ing, Morgan Kaufmann, 2005.

[22] Greg Spencer, Peter Shirley, Kurt Zimmerman, Donald P. Greenberg,
Physically-based glare effects for digital images, in: SIGGRAPH ’95:
Proceedings of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques, ACM Press, New York, NY, USA, 1995,
pp. 325–334.

[23] J. Vos, Disability glare—a state of the art report, C.I.E. Journal 3 (2)
(1984) 39–53.

[24] Akiko Yoshida, Rafal Mantiuk, Karol Myszkowski, Hans-Peter
Seidel, Analysis of reproducing real-world appearance on displays of
varying dynamic range, Computer Graphics Forum 25 (3) (2006)
415–426.

396 M. Colbert et al. / J. Vis. Commun. Image R. 18 (2007) 387–396


	Painting in High Dynamic Range
	Introduction
	Background
	Photographic tone mapper
	Algorithm
	Implementation
	Performance
	Conclusions and future work
	References


